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1) Definitions and counterexamples
We have N segments in a plane; for each segment, there are two waypoints Wi and Wj

at its extremes. The goal is to find the shortest path that passes over all waypoints and
over each segment. This is a special case of the Travelling Salesman Problem (TSP): here,
the connection graph is complete, meaning that the path can go from any point to any
other point. Some graph edges (Wi, Wj) are forced, one for each segment; S is the set of
such edges. We assume that no two Wi’s coincide and that no two segments cross; the
path starts and ends at a base point I, distinct from the Wi’s. Every Wi is connected to
one and only one edge in S.

For simplicity, we assume that all Wi’s can be visited in one path; in ongoing
developments, we want to expand the results presented here to the case where the
total path cost cannot be higher than a given value Tmax. Before reaching Tmax, the path
must go back to I.

For each pair of points, the Euclidean distance is dij = ∥Wi − Wj∥; we then define
a matrix of distances D =

(
di,j

)
. We now introduce modified distances d̃i,j, such that,

when the TSP is solved using the d̃i,j as weights in the graph, the optimal path passes
through the edges in S. Seven possible methods (denoted as A, B, . . . , G) of defining
the d̃i,j’s are detailed in Tab. 1.

One could naively expect that the simplest method A, where the forced edges have
zero length (and thus zero cost), guarantees that all of them are part of the optimal path,
but this is not the case, and infinitely many counterexamples exist; experimentally, it is
found that in most cases with realistic designs the shortest path skips some segments.
Similarly, method B (where the non-forced edges are penalized by adding to their
cost the maximum point-to-point distance ∆) can fail, although counterexamples are
harder to find; in all experiments on realistic designs, method B actually converges to
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(Wi, Wj) A B C D E F G

∈ S 0 di,j 0 di,j − ∆ δ 0 0

/∈ S di,j di,j + ∆ di,j + ∆ di,j + ∆ di,j + ∆ di,j + ∆− δ di,j + d fi,i + d f j,j

Table 1: modified distances d̃ij, depending on whether an edge is forced (first row) or not, with
the methods we considered (A to G); here, ∆ = maxi,j(dij) and δ = mini,j(dij). For
method G, if (Wi, Wj) /∈ S, let W fi

be the waypoint such that (Wi, W fi
) ∈ S (see method

G); similarly, W f j
is such that (Wj, W f j

) ∈ S. By the assumptions in Sec. 1, W fi
and W f j

exist and are unique; also, (I, Wj) /∈ S for all waypoints, in which case we set W f I = I

and thus d̃I,j = dI,j + d f j ,j.
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Figure 1: (a): a case where methods A and B fail. The shortest path is in blue, while the segments
are in red. The W ′

i s are marked by black circles, while I = (0, 0) is marked by a square.
The optimal path does not pass through (W3, W4). (b) and (c): with method A, paths
I-1-2-4-3-I and I-1-3-4-2-I have the same cost, as d2,4 + d3,I = d1,3 + d4,2 + d2,I , so an
optimizer may converge to the latter.

a solution that respects the constraints. A counterexample valid for both methods A
and B is reported in Fig. 1.

We are interested in defining methods that always lead to solutions that respect the
constraints. Indeed, we can prove that methods C to G always work. We prove this
by contradiction, assuming that the optimal path (Fig. 2) misses at least one required
segment (Wi, Wj), and then showing that a different path can be found with lower total
cost T.
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Figure 2: a subset of the Wi’s and two possible optimal paths. is the cost of the path (represented
only in part, as a dashed line) from Wi+1 to Wj−1, given by the sum of the d̃i,j’s; is the
same both in (a) and (b). Since (Wi, Wj) ∈ S, then (Wi, Wi+1), (Wj−1, Wj), (Wj, Wi+1)

and (Wj, Wj+1) are not in S, as no two segments share a point; (Wj−1, Wj+1) may or
may not be in S.

2) Proofs for methods C to G
Consider the part of the path that starts at Wi, ends at Wj+1 (the point visited imme-
diately after Wj), and does not pass by I between Wi and Wj (remembering that the
total path is closed); thus, either Wj+1 ≡ I or I is not in this part of the path. We show
that the alternative sub-path in Fig. 2(b), which starts and ends at the same points as
the one in Fig. 2(a) and visits the same points, but passes through the segment, has
lower cost (for all distance modification methods C to G); thus, the first path cannot be
optimal, contradicting our start assumption. Consider first method C. The total cost T

of the paths in the two cases (a) and (b) is respectively

Ta = d̃i,i+1 + + d̃j−1,j + d̃j,j+1 = (di,i+1 + ∆) + + (dj−1,j + ∆) + (dj,j+1 + ∆) (1)

and
Tb = 0 + d̃j,i+1 + + d̃j−1,j+1 = (dj,i+1 + ∆) + + (dj−1,j+1 + ∆) (2)

The first term d̃i,j in Tb is zero, since the first segment (Wi, Wj) is forced.
Comparing Eqs. (1) and (2) and deleting common terms, we find Ta > Tb if and

only if
di,i+1 + dj−1,j + dj,j+1 + ∆ > dj−1,j+1 + dj,i+1 (3)

which can be obtained by adding elementwise the following inequalities:

di,i+1 > 0 (4.1)

dj−1,j + dj,j+1 ≥ dj−1,j+1 (4.2)

∆ ≥ dj,i+1 (4.3)
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Figure 3: schematic for method G. Here, points W fi+1
, W f j−1

and W f j+1
may or may not be in the

subpath.
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Figure 4: start and end of the optimal path. We renumber the Wi’s in the order in which they
appear along the path, thus after W2N (where N is the number of segments) the path
goes back to I.

Here, (4.1) holds since no two Wi’s coincide, (4.2) is the triangle inequality, and (4.3)
is from the definition of ∆. Edge (Wj−1, Wj+1) may be forced: if so, the last term in
Eq. (2) is d̃j−1,j+1 = 0, so Tb is even lower. The proof for method D is identical, since
the d̃i,j’s are the same for the non-forced edges, and are even lower (as di,j − ∆ ≤ 0) for
the forced one.

We can also replace (4.1) with di,i+1 ≥ δ, with δ being the smallest point-to-point
distance. Adding together this with the other inequalities in (4), we find that Ta ≥ Tb

for both methods E and F, so in the worst-case scenario there may be multiple paths
(at least one of which passing through all segments) having the same minimum cost T;
notice that the inequalities (4.2) and (4.3) are tight, so that the equal sign may actually
hold. To guarantee that the chosen TSP solver converges to a solution that respects
all constraints, we can simply set δ as slightly smaller than the minimum distance
between the Wi’s, so di,i+1 > δ.
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To show that method G always works, refer to Fig. 3; the total cost for path (a) is

Ta = (di,i+1 + di,j + di+1, fi+1
) + + (dj−1,j + di,j + dj−1, f j−1

) + (dj,j+1 + di,j + dj+1, f j+1
)

(5.1)

Ta = (di,i+1 + di,j + di+1, fi+1
) + + (dj−1,j + di,j + dj−1, f j−1

) + (dj,j+1 + di,j) (5.2)

For path (b) we have instead

Tb = 0 + (dj,i+1 + di,j + di+1, fi+1
) + + (dj−1,j+1 + dj−1, f j−1

+ dj+1, f j+1
) (6.1)

Tb = 0 + (dj,i+1 + di,j + di+1, fi+1
) + + (dj−1,j+1 + dj−1, f j−1

) (6.2)

Here, Eqs. (5.1) and (6.1) hold if Wj+1 ̸≡ I (thus I is not in the subpath), and Eqs.
(5.2) and (6.2) otherwise; Eqs. (5) are derived from Eq. (1) and Eqs. (6) from Eq. (2). If
(Wj−1, Wj+1) ∈ S, the last term d̃j−1,j+1 in Eqs. (6) is zero, so again we ignore this case.
Then, Ta > Tb if and only if

di,i+1 + dj−1,j + di,j + dj,j+1 + di,j > dj−1,j+1 + dj,i+1 (7)

which is the sum of inequality (4.2) with the following:

di,j > 0 (8.1)

di,i+1 + di,j ≥ dj,i+1 (8.2)

Here, (8.1) is trivial as (4.1), while (8.2) is again due to the triangle inequality. Notice
that method G can be combined with method E, by setting the cost of segments in S to
δ instead of zero; alternatively, it can be combined with method F, by subtracting δ to
the cost of non-forced edges. The proof of the validity of these methods is identical to
the one above.

3) Equivalence of the TSP solution and generalizations
We also show that, if a path minimizes the sum of the d̃i,j’s, then it also minimizes
the total distance TR, which is the sum of the di,j’s. For methods C to G, we have
respectively (Fig. 4)

TR = dI,1 + d1,2 + d2,3 + d3,4 + . . . + d2N,I (9.1)

TC = dI,1 + ∆ + 0 + d2,3 + ∆ + 0 + . . . + d2N,I + ∆ (9.2)

TD = dI,1 + ∆ + d1,2 − ∆+ d2,3 + ∆ + d3,4 − ∆+ . . . + d2N,I + ∆ (9.3)

TE = dI,1 + ∆ + δ + d2,3 + ∆ + δ + . . . + d2N,I + ∆ (9.4)
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Figure 5: (a): a path that visits Wi ≡ Wj twice. At most one of edges (Wi, Wi−1), (Wi, Wi+1),
(Wi, Wj−1), and (Wi, Wj+1) is in S. (b) and (c): two shorter paths, with the same start
and end points.

TF = dI,1 + ∆− δ + 0 + d2,3 + ∆− δ + 0 + . . . + d2N,I + ∆− δ (9.5)

TG = dI,1 + d1,2 + 0 + d1,2 + d2,3 + d3,4 + 0 + . . . + d2N,I + d2N−1,2N

(9.6)

where each expression contains 2N + 1 terms. Define LS = d1,2 + d3,4 + . . . as the total
length of the N segments in S: comparing Eq. (9.1) with Eqs. (9.2–9.6), we find that

TC = TR + (N + 1)∆− LS TD = TR − ∆

TE = TR + (N + 1)∆+ δN − LS TF = TR + (N + 1)∆− δ(N + 1)− LS

TG = TR + LS

(10)

For a given case, ∆, δ, LS and N are fixed, so the differences in T with the d̃i,j’s and
with the di,j’s are constant, and the path minimizing TR also minimizes TC and so on
(and viceversa).

Finally, one may ask whether the shortest path through all edges in S actually visits
each point once; without this constraint, we have the Rural Postman Problem (RPP). The
path still needs to go back to I, so any point is connected to an even number M of edges
(M = 2 for the TSP). If a point Wi is visited two or more times (Fig. 5a), then shorter
paths exist that visit the same edges in S, start and end at Wi−1 and Wj+1, but pass
by Wi once: see Fig. 5(b), if an edge in S is visited after Wj−1, and Fig. 5(c) otherwise.
If Wi = I, both (b) and (c) are valid. Here, the edge costs are the di,j, so the triangle
inequality holds for (Wi, Wi−1, Wi+1) and (Wj, Wj−1, Wj+1). Thus, generalizing to the
RPP would not in fact give a shorter path.
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