
Pedipulation in Quadruped Robots Using a Heuristic Inverse
Kinematics Solver

Marco Tabita, Carmine Tommaso Recchiuto, Enrico Simetti, and Antonio Sgorbissa

Abstract— Quadruped robots have a wide range of applica-
tion domains, primarily focused on autonomous exploration and
monitoring tasks. Locomotion and manipulation represent the
two principal research areas associated with this class of robots.
Recently, pedipulation, which consists of executing manipula-
tion tasks using one of the robot’s limbs, has emerged as a novel
research direction, aiming to provide these robots with a level of
dexterity comparable to that of their biological counterparts,
while also enhancing their potential for physical and social
interaction with humans in everyday environments. Performing
pedipulation tasks presents considerable challenges in terms of
control and coordination, primarily due to the limited degrees
of freedom of the limbs and the complexity involved in fully
exploiting their kinematic capabilities. This paper investigates
the integration of a heuristic inverse kinematics solver within
a model-based, task-priority control framework for executing
pedipulation tasks of initial complexity. The proposed approach
is validated through both simulation studies and real-world
experiments conducted on a quadruped robotic platform.

I. INTRODUCTION

Among mobile robots, quadrupeds have distinguished
themselves by offering an effective balance of agility, sta-
bility, and compact dimensions. These characteristics make
them highly suitable for specialized tasks such as exploration,
search and rescue, and monitoring across diverse environ-
ments ranging from urban and industrial settings to natural
landscapes.

To fully realize their potential and closely emulate their
biological counterparts, these robotic systems require ad-
vanced locomotion capabilities coupled with sophisticated
manipulation skills. Specifically, this involves using legs
not merely for environmental interaction related to loco-
motion, but also for approaching obstacles and executing
non-prehensile manipulation tasks aimed at enhancing ex-
ploration and operational versatility. Pushing a light obstacle
out of its way or opening a door to enter a room—either
by pushing it if it is already half-open or by operating the
handle—are two key examples. This form of manipulation,
known as “pedipulation,” represents an emerging research
area within quadruped robotics that significantly expands the
robot’s functional repertoire.

Pedipulation not only enhances robot autonomy in com-
plex scenarios but can also positively influence human-robot
interaction in social environments. Actual dogs interact so-
cially with people using their paws. For example, a dog might
send a ball back to the person who threw it; place its paws

All authors are with Department of Informatics, Bioengineering, Robotics
and Systems Engineering, University of Genoa, Via All’Opera Pia 13, 16145
Genoa, Italy

Corresponding author: Marco Tabita, marco.tabita@edu.unige.it

on its owner’s hand to establish physical contact, reinforcing
an emotional bond or requesting petting, playtime, or food;
offer a paw for “shaking hands” as a trained behavior to show
trust and connection; or even, in the case of a pointing dog,
stop and stand still with one front paw lifted, body tense, and
nose directed toward the game. Enabling quadrupedal robots
to use their bodies to socially communicate with humans
can significantly enhance their social impact and increase
their chances of being accepted as companions in everyday
environments.

From a control perspective, quadruped robots inherently
involve significant complexity due to their dynamic behaviors
and numerous degrees of freedom. Such complexity mani-
fests itself in the robot’s ability to dynamically coordinate
intricate movements in response to environmental interac-
tions. Moreover, the associated dynamics are hybrid, under-
actuated, and highly nonlinear, further complicating control
tasks. As usual, the solutions to these control tasks typi-
cally fall into two categories: model-based and model-free
approaches. While model-based approaches offer enhanced
stability and precision, they are generally computationally
demanding and energy-intensive. Conversely, model-free ap-
proaches, although less precise, have the advantage of lower
computational cost and greater generalization capabilities,
making them particularly suitable for long-term operational
objectives.

Inverse kinematics (IK) solvers play a critical role
in model-based applications, particularly regarding motion
planning and manipulation tasks. The precision in control-
ling and accurately positioning robotic limbs is crucial for
applications demanding efficiency, accuracy, and autonomy.
Among the various IK methods, Forward And Backward
Reaching Inverse Kinematics (FABRIK) [1] has established
itself as a particularly efficient technique due to its simplicity,
rapid convergence rate, and minimal computational require-
ments compared to other analytical solutions. However, in its
original formulation, this algorithm presents limitations when
applied to robotic manipulators characterized by joints with
restricted degrees of freedom and strict kinematic constraints.

In this paper, we propose a model-based controller that
implements FABRIK, specifically tailored to handle com-
plex joint configurations with kinematic constraints, such
as joint angle limitations, in the context of pedipulation
tasks. This adaptation ensures valid joint configurations,
crucial for seamless integration into a comprehensive robotic
control framework. The proposed method has been tested
both in simulations and real-world scenarios employing the
quadruped robot Go1 by Unitree, thus demonstrating its

Fig. 1. The robot Go1 interacting with a target standing on three legs.

effectiveness and practical applicability in pedipulation tasks.
The remainder of this paper is structured as follows:

Section II provides background information on quadruped
robot control and introduces the FABRIK algorithm. Section
III details the adaptation of the IK solver and its integra-
tion within the proposed control framework, along with a
comprehensive description of the framework itself. Section
IV presents the conducted experiments, reports the obtained
results, and provides an accompanying discussion. Finally,
Section V concludes the paper, offering closing remarks and
outlining directions for future work.

II. BACKGROUND

The control problem for quadruped robots has tradition-
ally been approached primarily through model-based control
systems [2], [3], [4], [5], [6], [7]. These systems typically
employ hierarchical prioritized tasks [8], [3], establishing
a structured order of objectives aimed at ensuring safety,
stability, mission-specific targets, and optimality criteria.
Although this hierarchical framework allows for stable and
precise whole-body solutions, it presents the drawback that
control solutions are computed at execution time, thus not
optimizing their long-term impact.

Model Predictive Control (MPC) methods [4] have been
introduced to overcome this limitation. MPC formulates
optimal control strategies over a defined future time hori-
zon, replacing hierarchical constraints with non-hierarchical
optimization.

A diametrically opposite approach consists of employing
model-free controllers, where reinforcement learning tech-
niques are used to train controllers capable of performing
even highly complex tasks [9], [10], [11], [12], [13], [14].

When extending quadruped robots to perform manipula-
tion tasks, various strategies have been explored. A common
approach involves integrating an additional manipulator limb
[4], [15], facilitating complex operations, and leveraging the
robot’s legs to extend its workspace [16]. However, this strat-
egy significantly increases the control complexity, degrees
of freedom, robot dimensions, and energy consumption,
thereby reducing overall autonomy. Additionally, adding a
manipulator arm to the back of a robotic dog creates a
hybrid with no biological counterpart, which some people
may perceive as uncanny, potentially hindering its acceptance
in social environments.

Alternatively, methods without an extra limb predomi-
nantly involve non-prehensile manipulation, with some ex-
ceptions that involve attaching an additional gripper directly
to one or more of the quadruped’s legs [11], employing all
four legs while the robot is positioned on its back [17],
or finally using the robot’s body itself to interact with
objects [5]. More recently, the concept of pedipulation has
emerged, which refers to manipulation tasks performed using
one of the robot’s legs. This technique has predominantly
been explored using model-free methods. However, there are
also cases where model-based controls are employed at the
low-level execution stage, integrating reinforcement learning
specifically for the manipulation planning task [13].

Regardless of the adopted approach, IK solutions play
a fundamental role in enabling robotic manipulation tasks.
Within this context, the FABRIK algorithm has gained
considerable attention due to its intrinsic simplicity, com-
putational efficiency, and ability to generate smooth trajec-
tories, particularly within computer graphics and animation
applications [1]. Nevertheless, the original formulation of the
IK-solver presents notable limitations when directly applied
to robotic manipulation scenarios, especially for kinematic
chains composed exclusively of single-degree-of-freedom
joints. As a result, multiple studies have aimed to extend
the original algorithm to better accommodate robotic appli-
cations, leveraging its inherent simplicity and effectiveness
[18], [19], [20], [21].

Among these extensions, the work presented by Santos et
al. [18] introduced FABRIK-R, an approach that incorporates
joint constraints by projecting joint movements onto prede-
fined planes, taking into consideration the interdependencies
and limitations of parent-child joints. Notably, this solution
primarily addresses orientation constraints without explicitly
integrating joint positional limits. Additionally, Aristidou et
al. [21] significantly advanced the solver by including con-
straints relevant to anthropometric and robotic joint models
and proposing optimization techniques for handling unreach-
able targets effectively.

Finally, expanding further on the applicability of the
solver, Santos et al. [20] developed M-FABRIK, a novel
inverse kinematics algorithm specifically designed for mobile
manipulators. This method not only demonstrates its adapt-
ability but also introduces dynamic repositioning capabilities
of the manipulator’s base, thus reinforcing the algorithm’s
robustness and flexibility across different scenarios.

III. METHODOLOGY

A. Adapting FABRIK for pedipulation

Unlike traditional methods that rely on Jacobian matrices,
FABRIK avoids directly computing partial derivatives or
complex matrix calculations. Instead, it iteratively updates
joint positions using simple geometric operations, such as
projecting points onto planes and lines, while maintaining
accurate link distances. The base algorithm [1] operates
through two sequential phases: forward reaching and back-
ward reaching. In the forward phase, joint positions are
adjusted from the end-effector inward toward the base, con-
sistently adhering to link length constraints. The backward
phase reverses this procedure, starting from the base and
moving outward towards the end-effector to enforce the same
geometric constraints. By alternately executing these two
phases until convergence is reached, the result consists of
a suitable inverse kinematics solution, frequently producing
visually smooth joint trajectories.

This algorithm was originally developed for computer
graphics applications. Consequently, it presents certain lim-
itations when applied to robotics, such as not inherently
accounting for the constraints introduced by specific joint
types, the relationship between sequential joints, and the
angular limits imposed by the robot’s physical structure.
These limitations have prompted numerous researchers to
further develop the algorithm and adapt it specifically for
particular robotic applications. The intrinsic simplicity and
easily extensible structure of this kind of approach facilitate
such modifications and extensions.

To make this solver suitable for our specific application
of controlling the leg of a quadruped robot, it is necessary
to integrate the constraints defined by the robot’s rotational
joints into the algorithm. The modifications implemented in
our approach were inspired by the work presented in [18],
and [19], where this kind of solver was adapted for inverse
kinematics problems in spatial manipulation tasks. In that
study, the modifications primarily focused on maintaining
the manipulator’s center of mass fixed in the inertial frame
while complying with the kinematic constraints of each joint.

In our case, the objective is not to maintain a fixed center
of mass, but rather to appropriately manage the kinematic
constraints of the joints. Essentially, our modification retains
the original forward-reaching phase, thereby obtaining what
can be considered the ideal solution, which is subsequently
adjusted during the backward-reaching phase by projecting
each joint onto the corresponding constraint plane of the
previous one. During each joint repositioning, it is verified
that the resulting increment does not exceed the joint limits,
and if this occurs, the value is saturated accordingly.

The backward-reaching phase, in this way, results in
slower convergence of the end-effector towards the target,
introducing the risk of falling into a local minimum and
thus preventing convergence to the desired target. To mitigate
this slowdown, an additional phase called the compensa-
tion phase has been introduced. This modification aims
to reduce the distance between the end-effector and the

Algorithm 1 Compensation Phase
1: for i = n−1 to 1 do
2: Φi← computePro jectionMatrix(i)
3: jrt ←Φi ·w rt
4: jre←Φi ·w re
5: ρ ← computeRotation(jre,

j rt)
6: if norm(ρ)> 10−4 then
7: ∆θ ← ρ · k j
8: else
9: ∆θ ← 0.0

10: end if
11: θi← saturate(∆θ ,θi, θ̄i,θ i)
12: updateJointsPosition(i,θi)
13: end for

target by calculating a projected contribution within the
corresponding constraint plane for each joint, traversing the
kinematic chain in the same direction as the forward-reaching
phase. Throughout this process, joint values are consistently
checked and saturated according to their respective joint
limits. The pseudo code of this phase is reported in the
Algorithm 1. For each joint position, starting from the
end-effector towards the base, the projection matrix Φi is
computed, as indicated in Line 2. This matrix projects a
point expressed with respect to the global reference frame
<w> onto the constraint plane associated with the i-th joint,
relative to its local reference frame. This operation enables
an easy computation of the relative angle-axis rotation ρ

between the projected positions of the end-effector, jre, and
the target, jrt , by exploiting the properties of vector and
scalar products. The resulting ρ vector is obtained in Line
5. In the presence of a possible correction, which means
that a corresponding rotation magnitude ∆θ is greater than
a minimum threshold, this contribution is computed by re-
projecting ρ onto the corresponding joint’s axis of rotation
k j as a safety check Line 7 and saturated at Line 11. Finally,
at Line 12, the positions of the subsequent joint frames
following the i-th joint are updated accordingly.

B. Task priority architecture

This section outlines the general architecture of the pro-
posed pedipulation framework (Figure 2), highlighting its
key modules, which include the Main Loop that manages
all components, the Mission Manager, and the IK Solver.
The remaining components are: the Unitree IO-Interface,
the Unitree State Estimator, the Robot Model, and auxiliary
structures that support execution and visualization.

Given the necessity of having a modular framework
capable of autonomously executing pedipulation tasks, we
developed a solution whose core consists of a Task Priority
controller implemented using the TSID library [22]. This
choice was driven by the efficiency, versatility, and robust-
ness of this type of low-level control, as well as TSID’s
compatibility with Pinocchio [23], a library commonly used
in other legged systems applications for efficiently computing
the dynamics (and derivatives) of a robot model.

Unitree State
Estimator

Unitree
IO-Interface

HQP
Controller

Main
Loop

IK Solver

Mission
Manager

Robot Model

/joint_states

/odom

Phase 1

Phase N

Mission Definition

Fig. 2. Control framework architecture: the structure that collects all modules is the Main Loop, the Unitree IO-Interface, and the Unitree State Estimator
are provided by the Unitree repository.

We defined in the HQP controller a set of tasks specif-
ically dedicated to pedipulation, temporarily excluding as-
pects related to locomotion, gait generation, and trajectory
optimization. This library allows for the definition of inverse
dynamics tasks, representing objectives such as equalities
and inequalities to be satisfied according to a hierarchical
order. The general structure of such a task is provided in
Equation 1:

Jÿ = ẍ∗−Kp(x− x∗)−Kd(ẋ− ẋ∗)− J̇y, (1)

where y is the control vector, J is the Jacobian matrix, x
is the controlled variable and x∗ is the task reference. The
following tasks were then implemented and prioritized in the
following order:

1) Base dynamics Equality Task
2) Balancing Inequality Task
3) Contact Point Tasks for feet in stance, comprising

the no-motion equality constraint and force inequality
constraint to prevent slippage

4) Body Position and Attitude Equality Task
5) Joint Posture Equality Task for the pedipulation leg
The first task (1) models the dynamics associated with

the unactuated Degrees Of Freedom (DoFs) of the floating
base. This task is fundamental for ensuring that the generated
command is dynamically feasible.

The balancing inequality task (2) defined in the library
constrains the capture point introduced in [24] within a range
approximately corresponding to the support polygon defined
by ground contacts. To enhance versatility, this task was
modified to allow the capture point to be constrained within a
defined ”safety polygon”. This safety polygon is expressed in
a dedicated reference frame that can be dynamically adjusted
at runtime based on the orientation of the support polygon in
the world. This modification ensures a more robust constraint
on the capture point’s motion, assuring that it remains within
the primary support polygon even when there are only

three feet simultaneously in contact with the ground. The
parameters defining the safety polygon, including its size,
position, and the orientation of the dedicated frame, are
autonomously set by a module named the Mission Manager,
which will be discussed in detail subsequently.

Regarding constraints due to rigid ground contacts (3),
these are easily managed by the TSID library, which allows
the addition and removal of contacts from the main control
problem formulation during execution. This is accomplished
by defining key parameters, including the contact position,
friction coefficient, and the ground normal vector at the
contact point.

The task responsible for controlling the pose of the body
frame in the world (4) ensures that the controlled variables
match the defined reference up to the second derivative.

Similarly, the posture task for the pedipulation leg (5)
operates in the same manner, with the Mission Manager
handling the addition and removal of the task for the selected
leg whenever necessary within the main formulation.

The complete control formulation is subsequently trans-
lated into a Hierarchical Quadratic Programming (HQP)
problem, whose solution yields the control signal to be
applied. Due to the limitations imposed by TSID, the HQP
solver implemented can handle only two priority levels,
forcing us to group the defined tasks into two main groups.
Without focusing on the trajectory optimization of the body
frame, position, velocity, and acceleration references are
computed by solving a fifth-order polynomial equation, as
shown in Equation 2, assuming zero velocity and acceleration
at the initial and final time. This approach is employed for
both the body frame and the foot pose trajectories. The
computed reference is provided to the controller in Equation
1 and sampled at each control iteration.

x(t) = a0 +a1t +a2t2 +a3t3 +a4t4 +a5t5,

ẋ(t) = a1 +2a2 t +3a3 t2 +4a4 t3 +5a5 t4,

ẍ(t) = 2a2 +6a3 t +12a4 t2 +20a5 t3.

(2)

The Mission Manager is the module responsible for or-
chestrating the execution of user-defined missions, according
to the intended robot operations. Each mission phase is
represented as a distinct state, equipped with methods to
update task references, monitor the progress of the phase,
and assess its successful completion or potential failure. The
Mission Manager continuously supervises the state of each
phase and manages transitions between them accordingly.
The task interface provided by the HQP Controller module
allows for setting the desired task references and retrieving
the corresponding task errors. Additional methods are then
integrated to support visualization and terminal logging func-
tionalities.

Currently implemented mission phases include:
• Body motion towards a target position.
• Body rotation to achieve a desired attitude.
• Transitioning a leg between support and pedipulation

modes.
• Target-reaching for the designated foot.
By sequentially combining these distinct phases, it is

possible to construct a wide variety of robot actions, ranging
in complexity.

The IK Solver is the module responsible for solving the
inverse kinematics problem. By accessing the Pinocchio
model, the kinematic chain of interest (one of the robot’s
four limbs) is isolated. Provided a solution exists, the solver
returns the corresponding joint configuration of the selected
limb that achieves the target pose specified by the current
mission phase in the world frame. In case of a non-existent
solution, the corresponding mission is considered failed.

IV. EXPERIMENTS

To validate the modified solver, preliminary experiments
were initially conducted using MATLAB, followed by simu-
lations in ROS Gazebo, and finally through real-world testing
on the physical robot.

To test the IK Solver, the context was reconstructed in
MATLAB to closely mimic the standing configuration of a
quadruped robot leg, with reference dimensions derived from
the Go1 quadruped platform. The selected limb for reference
was the front right leg, though this choice does not affect
the correct functioning of the algorithm. Proceeding with the
experiment setup, 200 random targets were sampled within
a 30×30×30 cm volume located 20 cm below and 10 cm
in front of the shoulder.

The case studies for validating the control framework
in simulation and with the Unitree Go1 were chosen by
considering scenarios that might frequently be encountered
in daily life. Below are three examples considered:
• Pushing objects. In certain situations, some obstacles

can be easily managed by moving them out of the
robot’s way. In these cases, it can be useful, or even
necessary, for the robot to interact with environmental
objects through pedipulation, such as pushing a light
object or opening a door (Figures 1 and 6).

• Removing objects from one’s back. During common
routines, objects may accidentally fall onto the robot’s

5 6 7 8 9 10 11 12 13 14

t [s]

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

q
 [
ra

d
]

Hip Joint Position

q

q *

5 6 7 8 9 10 11 12 13 14

t [s]

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

q
 [
ra

d
]

Thigh Joint Position

q

q *

5 6 7 8 9 10 11 12 13 14

t [s]

-2.8

-2.6

-2.4

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

q
 [
ra

d
]

Calf Joint Position

q

q *

Fig. 3. Corresponding joints positions during the phases of pedipulation in
the mission of hitting a target (Figure 1). The positions in radians measured
from the robot’s joint encoders are indicated in red, while the desired joint
positions computed are in blue.

back or be improperly placed on it by a user with malev-
olent intent. Removing these objects using pedipulation
is feasible, provided joint limits permit such motions.
This case is particularly prone to collisions between the
calculated trajectory and the robot’s body (Figure 8).

• Obstacle sensing. If pressure sensors are installed on the
robot’s feet, and provided they have sufficient sensitivity
and proper calibration, they can be used not only to
detect contacts but also to analyze potential obstacles
encountered during exploration tasks. Understanding the
nature of an obstacle, particularly whether it is mobile
or fixed, and soft or rigid, is crucial for subsequent
interactions (Figure 5).

• Social interaction. Some gestures can be key to socially
interacting with people, rather than physically altering
the environment. An example is giving a paw to a person
to show trust and connection, which may increase the
robot’s acceptability in everyday situations (Figure 7).

As reported in Section III-B, experiments defined as
autonomous missions consist of a series of main phases
that must be completed, otherwise, the mission fails. The
defined missions share a similar structure, beginning with the
robot lying on the ground. Subsequently, the robot stands up,
adjusts its posture to ensure adequate stability to the resulting
support polygon, and then lifts the designated leg. The leg
starting working position is located 15 cm below its shoulder.
From this point, all target poses are sequentially reached to
perform the required actions. The mission concludes with
the robot placing the leg back on the ground.

5 6 7 8 9 10 11 12 13 14

t [s]

-3

-2

-1

0

1

2

3

q
d

 [
ra

d
/s

]

Hip Joint Velocity

qd

qd *

5 6 7 8 9 10 11 12 13 14

t [s]

-3.5

-2.5

-1.5

-0.5

0.5

1.5

2.5

q
d

 [
ra

d
/s

]

THigh Joint Velocity

qd

qd *

5 6 7 8 9 10 11 12 13 14

t [s]

-3

-2

-1

0

1

2

3

q
d

 [
ra

d
/s

]

Calf Joint Velocity

qd

qd *

Fig. 4. Joints velocities during the phases of pedipulation in the mission
of hitting a target (Figure 1). The velocities in radians per second measured
from the joint encoders of the robot are reported in red. The desired angle
rates computed are in blue.

A. Results

The results obtained from testing the IK Solver in MAT-
LAB show that 180 out of 200 targets were successfully
reached, with an average positioning error of 4 mm and
an average convergence rate of 1.76 iterations. Upon further
analysis of the 20 targets that were not reached, it was found
that 19 were physically unreachable due to exceeding the
limb’s positional limits, given the defined threshold of 1 cm.

Pedipulation case studies were implemented both in sim-
ulation and with the Unitree Go1 robot. In the following, for
brevity, we will present only results with the actual robot. All
defined missions were completed, with the robot effectively
using each of its four limbs to perform pedipulation tasks
as needed. Specific tasks successfully performed in real
scenario included opening an office door, showing a foot
positioning error of 0.059 m; interacting with a cardboard cat
placed around the robot (in front, behind, and on its back)
with positioning errors of 0.032 m, 0.031 m, and 0.075 m,
respectively; interacting with a human 0.062 and reaching
various targets to inspect soft and fixed obstacles, with a
mean error of 0.041 m1 Graphs in Figures 3 and 4 illustrate
joint position and velocity trends for the pedipulation leg
during relevant phases of interaction with the cardboard cat
in Figure 1, excluding preliminary body movements. The
plots demonstrate satisfactory convergence, although static

1Videos documenting all conducted experiments are available at the
following link: https://youtu.be/rXkSEL_xMx8

Fig. 5. The robot inspects an obstacle in front of it using the front right
leg.

Fig. 6. The robot uses the front right leg to opens a half-closed door,
making it possible to pass.

errors are visible in certain instances, likely attributable to
limitations in the model and the QP solver used by TSID.

V. DISCUSSION

From the results obtained while testing the IK solver in
MATLAB simulations, the initially unreachable target was
subsequently identified as actually reachable. This error was
due to the target being located in a critical area where
the forward phase positioned the elbow in a location that,
upon projection, returned it to its previous iteration point,
leaving the convergence error unchanged. This highlights
that, despite the proposed modifications, certain points re-
main challenging to reach. Nonetheless, such challenging
targets represent uncommon scenarios and do not impede the
practical applicability of the proposed methods. The results

https://youtu.be/rXkSEL_xMx8
https://youtu.be/rXkSEL_xMx8

Fig. 7. The robot gives its paw to the human standing in front of it.

also showed that the initial configuration of the leg plays
a crucial role in determining the quality of the solution. It
was observed that an extended arm configuration tends to
yield the best performance in terms of success in finding the
solution. Nevertheless, the choice of the initial configuration
does not affect the feasibility of the resulting motion. As long
as all joint constraints are strictly respected and the reference
for the corresponding task is defined in joint space, any
valid solution remains reachable from any other admissible
configuration.

Regarding case studies in simulation and with the actual
Go1 robot, it should be noted that target definition strictly
depends on the type of action defined by the user. Since
modules for obstacle detection and avoidance are currently
absent, users are responsible for defining which targets to
reach and their positions.

It is also worth noting that this approach aims to achieve
pedipulation tasks by using the quadruped robot’s leg as
if it were a fixed-base manipulator. During execution, the
framework calculates the desired end-effector position, for-
mulates the inverse kinematics problem, and, upon solving it,
determines the trajectory to be followed in joint space. This
methodology is sensitive to base displacements; therefore,
the base equality task for this type of action is set to minimize
base movement as much as possible. In practice, the Unitree
State Estimator exhibited insufficient precision, resulting in
drift that negatively impacted the convergence of the end-
effector toward the goal. Nevertheless, the results obtained
are highly encouraging, showing relatively low positioning
errors. Higher errors were recorded during more complex
movements, such as removing an object from the robot’s
back and opening a door, with the latter naturally increasing
resistance and thus amplifying the error.

Fig. 8. The robot uses the front left leg to remove an object on its back.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we presented an architecture that relies on a
heuristic inverse kinematics solver specifically designed for
pedipulation tasks.

This form of pedipulation enables a higher level of interac-
tion for this class of quadruped robots, which are increasingly
being considered for operation in urban and unstructured en-
vironments. In addition to providing solutions for interacting
more effectively with human-inhabited environments (e.g.,
by pushing light objects out of its way or opening doors),
pedipulation may increase the social acceptability of robotic
dogs by fostering an emotional bond with their owners.

The results from simulations and with an actual Go1
robot demonstrate that the implemented architecture was
effective in the majority of the proposed scenarios. However,
certain cases revealed vulnerabilities in handling specific
target configurations, both in terms of target positions to be
reached and initial configurations from which the problem is
solved, highlighting directions for future work.

Exploring alternative control formulations for this type
of manipulation will be of great interest. In particular, by
reformulating the problem to integrate potential contributions
from the remaining available degrees of freedom, it would
be possible to achieve true whole-body pedipulation, thereby
further enhancing the robot’s capabilities to interact with both
environments and people.

REFERENCES

[1] A. Aristidou and J. Lasenby, “Fabrik: A fast, iterative solver for the
inverse kinematics problem,” Graphical Models, vol. 73, pp. 243–260,
9 2011.

[2] F. Farshidian, E. Jelavi´c, A. Satapathy, M. Giftthaler, and J. Buchli,
Real-Time Motion Planning of Legged Robots: A Model Predictive
Control Approach. IEEE, 2018.

[3] D. Bellicoso, K. Krämer, M. Stäuble, D. Sako, F. Jenelten, M. Bjelonic,
and M. Hutter, ALMA-Articulated Locomotion and Manipulation for
a Torque-Controllable Robot, 2019.

[4] J.-P. Sleiman, F. Farshidian, M. V. Minniti, and M. Hutter, “A
unified mpc framework for whole-body dynamic locomotion and
manipulation,” 3 2021. [Online]. Available: http://arxiv.org/abs/2103.
00946

[5] M. V. Minniti, R. Grandia, F. Farshidian, and M. Hutter, “Adaptive
clf-mpc with application to quadrupedal robots,” IEEE Robotics and
Automation Letters, vol. 7, pp. 565–572, 1 2022.

[6] R. Grandia, F. Farshidian, R. Ranftl, and M. Hutter, “Feedback mpc
for torque-controlled legged robots,” 5 2019. [Online]. Available:
http://arxiv.org/abs/1905.06144

[7] G. Xin, W. Wolfslag, H. C. Lin, C. Tiseo, and M. Mistry, “An
optimization-based locomotion controller for quadruped robots lever-
aging cartesian impedance control,” Frontiers in Robotics and AI,
vol. 7, 4 2020.

[8] R. Grandia, F. Jenelten, S. Yang, F. Farshidian, and M. Hutter,
“Perceptive locomotion through nonlinear model predictive control,”
8 2022. [Online]. Available: http://arxiv.org/abs/2208.08373

[9] Y. Ouyang, J. Li, Y. Li, Z. Li, C. Yu, K. Sreenath, and Y. Wu,
“Long-horizon locomotion and manipulation on a quadrupedal
robot with large language models,” 4 2024. [Online]. Available:
http://arxiv.org/abs/2404.05291

[10] X. Cheng, A. Kumar, and D. Pathak, “Legs as manipulator: Pushing
quadrupedal agility beyond locomotion,” 3 2023. [Online]. Available:
http://arxiv.org/abs/2303.11330

[11] C. Lin, X. Liu, Y. Yang, Y. Niu, W. Yu, T. Zhang, J. Tan, B. Boots,
and D. Zhao, “Locoman: Advancing versatile quadrupedal dexterity
with lightweight loco-manipulators,” 3 2024. [Online]. Available:
http://arxiv.org/abs/2403.18197

[12] S. Jeon, M. Jung, S. Choi, B. Kim, and J. Hwangbo, “Learning
whole-body manipulation for quadrupedal robot,” IEEE Robotics and
Automation Letters, vol. 9, pp. 699–706, 1 2024.

[13] Z. He, K. Lei, Y. Ze, K. Sreenath, Z. Li, and H. Xu, “Learning
visual quadrupedal loco-manipulation from demonstrations,” 3 2024.
[Online]. Available: http://arxiv.org/abs/2403.20328

[14] Y. Ji, G. B. Margolis, and P. Agrawal, “Dribblebot: Dynamic legged
manipulation in the wild,” in Proceedings - IEEE International Con-
ference on Robotics and Automation, vol. 2023-May. Institute of
Electrical and Electronics Engineers Inc., 2023, pp. 5155–5162.

[15] S. Zimmermann, R. Poranne, and S. Coros, “Go fetch! - dynamic
grasps using boston dynamics spot with external robotic arm,” in
Proceedings - IEEE International Conference on Robotics and Au-
tomation, vol. 2021-May. Institute of Electrical and Electronics
Engineers Inc., 2021, pp. 1170–1176.

[16] M. Liu, Z. Chen, X. Cheng, Y. Ji, R.-Z. Qiu, R. Yang, and X. Wang,
“Visual whole-body control for legged loco-manipulation,” 3 2024.
[Online]. Available: http://arxiv.org/abs/2403.16967

[17] F. Shi, T. Homberger, J. Lee, T. Miki, M. Zhao, F. Farshidian,
K. Okada, M. Inaba, and M. Hutter, “Circus anymal: A quadruped
learning dexterous manipulation with its limbs,” 11 2020. [Online].
Available: http://arxiv.org/abs/2011.08811

[18] M. C. Santos, L. Molina, E. A. Carvalho, E. O. Freire, J. G. Carvalho,
and P. C. Santos, “Fabrik-r: An extension developed based on fabrik
for robotics manipulators,” IEEE Access, vol. 9, pp. 53 423–53 435,
2021.

[19] G. Dong, P. Huang, Y. Wang, and R. Li, “A modified forward and
backward reaching inverse kinematics based incremental control for
space manipulators,” Chinese Journal of Aeronautics, vol. 35, pp. 287–
295, 12 2022.

[20] P. C. Santos, R. C. S. Freire, E. A. N. Carvalho, L. Molina, and
E. O. Freire, “M-fabrik: A new inverse kinematics approach to mobile
manipulator robots based on fabrik,” IEEE Access, vol. 8, pp. 208 836–
208 849, 2020.

[21] A. Aristidou, Y. Chrysanthou, and J. Lasenby, “Extending fabrik with
model constraints,” Computer Animation and Virtual Worlds, vol. 27,
pp. 35–57, 1 2016.

[22] A. D. Prete, N. Mansard, O. E. Ramos, O. Stasse, and F. Nori,
“Implementing torque control with high-ratio gear boxes and
without joint-torque sensors,” in Int. Journal of Humanoid Robotics,
2016, p. 1550044. [Online]. Available: https://hal.archives-ouvertes.
fr/hal-01136936/document

[23] J. Carpentier, G. Saurel, G. Buondonno, J. Mirabel, F. Lamiraux,
O. Stasse, and N. Mansard, “The pinocchio c++ library-a fast
and flexible implementation of rigid body dynamics algorithms and
their analytical derivatives,” Tech. Rep., 1 2019. [Online]. Available:
https://laas.hal.science/hal-01866228v2

[24] O. E. Ramos, N. Mansard, and P. Soù, “Whole-body motion integrating
the capture point in the operational space inverse dynamics control,”
Tech. Rep.

http://arxiv.org/abs/2103.00946
http://arxiv.org/abs/2103.00946
http://arxiv.org/abs/1905.06144
http://arxiv.org/abs/2208.08373
http://arxiv.org/abs/2404.05291
http://arxiv.org/abs/2303.11330
http://arxiv.org/abs/2403.18197
http://arxiv.org/abs/2403.20328
http://arxiv.org/abs/2403.16967
http://arxiv.org/abs/2011.08811
https://hal.archives-ouvertes.fr/hal-01136936/document
https://hal.archives-ouvertes.fr/hal-01136936/document
https://laas.hal.science/hal-01866228v2

	Introduction
	Background
	Methodology
	Adapting FABRIK for pedipulation
	Task priority architecture

	Experiments
	Results

	Discussion
	Conclusions And Future Work
	References

